Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23010012-12    https://doi.org/10.11896/cldb. 23010012
  高分子与聚合物基复合材料 |
ZIF衍生材料在ORR、OER和HER领域的应用研究进展
赵帅凯1, 李亚如1,2, 任永鹏1,2,3,*, 王长记1,2,3, 潘昆明1,2,3,*, 王利萌1, 吕贝贝1, 夏梁彬1, 陈雪敏1
1 河南科技大学材料科学与工程学院,河南 洛阳 471000
2 河南科技大学金属材料磨损控制与成型技术国家地方联合工程研究中心,河南省高温结构与功能材料重点实验室,河南 洛阳 471000
3 龙门实验室,河南 洛阳 471000
Research Progress on the Application of ZIF-derived Materials in Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions
ZHAO Shuaikai1, LI Yaru1,2, REN Yongpeng1,2,3,*, WANG Changji1,2,3, PAN Kunming1,2,3,*, WANG Limeng1, LYU Beibei1, XIA Liangbin1, CHEN Xuemin1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China
2 Henan Key Laboratory of High-temperature Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471000, Henan, China
3 Longmen Laboratory, Luoyang 471000, Henan, China
下载:  全 文 ( PDF ) ( 26254KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧还原反应(ORR)、析氧反应(OER)和析氢反应(HER)是电催化过程的三个关键半反应,这些反应通常受反应动力学的限制,开发高效稳定的电催化剂可以降低反应活化能,提升燃料电池、金属-空气电池和电解池等新能源器件的性能。沸石咪唑框架结构(ZIF)拥有多孔结构和高比表面积等特点,其衍生物具有分散、稳定的活性位点,能够提高金属位点的催化活性并降低其用量。本文从ZIF衍生材料在ORR、OER和HER领域的研究现状出发,综述典型ZIF衍生材料的结构、活性中心与性能之间的构效关系。首先总结了ZIF衍生材料的电催化机理和典型的制备方法,详细说明了结构调控和活性中心调控对ZIF衍生材料催化性能的影响;最后,展望了该材料在电催化方面未来的发展和优化设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵帅凯
李亚如
任永鹏
王长记
潘昆明
王利萌
吕贝贝
夏梁彬
陈雪敏
关键词:  电催化  沸石咪唑结构  衍生物  氧还原反应  析氧反应  析氢反应    
Abstract: Oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are three vital electrocatalytic semi-reactions commonly constrained by reaction kinetics. Efficient and stable electrocatalysts can lower the reaction activation energy, enhancing the performance of new energy devices such as fuel cells, metal-air batteries and electrolytic cells. Zeolite imidazole framework (ZIF) structures possess porous structure and high specific surface area, with their derivatives have dispersed and stable active sites, which can improve catalytic performance while reducing metal consumption. This paper presents the structure-activity relationship between typical ZIF-derived material's structure, active center and properties based on their research status in the fields of ORR, OER, and HER. Firstly, the electrocatalytic mechanism and typical preparation methods of ZIF-derived materials were summarized, followed by a discussion on the effects of structure regulation and active center regulation on the catalytic performance of ZIF-derived materials. Finally, the future development and optimization design of the material for electrocatalysis were prospected.
Key words:  electrocatalysis    zeolite imidazole framework structure    derivatives    oxygen reduction reaction    oxygen evolution reaction    hydrogen evolution reaction
发布日期:  2023-09-06
ZTFLH:  O643.36  
基金资助: 国家自然科学基金(51901069);河南大学科技创新人才计划(22HASTIT1006);中原英才计划(ZYYCYU202012172);新加坡教育部(RG70/20)
通讯作者:  *任永鹏,河南科技大学材料科学与工程学院讲师。2014年于河南科技大学材料科学与工程学院获得硕士学位,2019年毕业于中南大学冶金与环境学院,获得博士学位,2019年至2021年在河南科技大学材料科学与工程学院从事博士后研究。目前主要从事功能材料方面的研究。Ren_YP123@163.com;
潘昆明,河南科技大学材料科学与工程学院教授、硕士研究生导师。2007年本科毕业于郑州大学材料科学与工程学院,2013毕业于北京科技大学新金属材料国家重点实验室,获得博士学位,2014年于河南科技大学河南耐磨材料工程技术研究中心工作至今,2019.11—2020.11于新加坡南洋理工大学作为访问学者,目前为河南省高温结构与功能材料重点实验室主任、龙门实验室智能装备先进材料科创中心副主任。主持国家级课题5项,获省部级一等奖3项。目前主要从事高温结构与功能材料,智能装备先进材料方面的研究。pankunming2008@haust.edu.cn   
作者简介:  赵帅凯,2021年7月于新乡学院获得工学学士学位,现为河南科技大学材料科学与工程学院硕士研究生,在潘昆明教授和任永鹏讲师的指导下进行研究。目前主要研究领域为电解水材料的制备及应用。
引用本文:    
赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
ZHAO Shuaikai, LI Yaru, REN Yongpeng, WANG Changji, PAN Kunming, WANG Limeng, LYU Beibei, XIA Liangbin, CHEN Xuemin. Research Progress on the Application of ZIF-derived Materials in Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. Materials Reports, 2023, 37(S1): 23010012-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb. 23010012  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23010012
1 Birol F, Argiri M. Energy, 1999, 24(11), 905.
2 Gao Y, Xiao Z, Kong D, et al. Nano Energy, 2019, 64, 103879.
3 Wen X, Guan J. Applied Materials Today, 2019, 16, 146.
4 Radwan A, Jin H, He D, et al. Nano-Micro Letters, 2021, 13, 1.
5 Zhou Y, Abazari R, Chen J, et al. Coordination Chemistry Reviews, 2022, 451, 214264.
6 Zhai Z, Yan W, Dong L, et al. Journal of Materials Chemistry A, 2021, 9(36), 20320.
7 Khan M, Janjua N K, Ahmad A, et al. International Journal of Energy Research, 2022, 46(10), 14161.
8 Tang W, Li B, Teng K, et al. Journal of Materiomics, 2022, 8(2), 454.
9 Lin S Y, Chen Y P, Cao Y, et al. Journal of Power Sources, 2022, 521, 230926.
10 Zhao K, Zhu W, Liu S, et al. Nanoscale Advances, 2020, 2(2), 536.
11 Chen Y, Xu Y, Niu S, et al. Chem Communications, 2021, 57(37), 4572.
12 Khan S, Noor T, Iqbal N, et al. ChemNanoMat, 2022, 8(7), e202200115.
13 Yang Y, Fu J, Zhang Y, et al. Journal of Physical Chemistry C, 2021, 125(41), 22397.
14 Zhang H, Su J, Zhao K, et al. Chemelectrochem, 2020, 7(8), 1805.
15 Sun T, Xu L, Wang D, et al. Nano Research, 2019, 12(9), 2067.
16 Wang Y, Waterhouse G I N, Shang L, et al. Advanced Energy Materials, 2021, 11(15), 2003323.
17 Jadhav H S, Bandal H A, Ramakrishna S, et al. Advanced Materials, 2022, 34(11), 2107072.
18 Chen Z, Qing H, Zhou K, et al. Progress in Materials Science, 2020, 108, 100618.
19 Jiao Y Q, Li M T, Qin C, et al. Crystengcomm, 2017, 19(13), 1721.
20 Saliba D, Ammar M, Rammal M, et al. Journal of the American Chemical Society, 2018, 140(5), 1812.
21 Zhu B, Xia D, Zou R. Coordination Chemistry Reviews, 2018, 376, 430.
22 Ploetz E, Engelke H, Laechelt U, et al. Advanced Functional Materials, 2020, 30(41), 1909062.
23 Seh Z W, Kibsgaard J, Dickens C F, et al. Science, 2017, 355(6321), eaad4998.
24 Hao B, Tang Y T, Li X F, et al. Materials Reports, 2020, 34(11), 11035(in Chinese).
郝博, 唐一桐, 李雪霏, 等. 材料导报, 2020, 34(11), 11035.
25 Ren Y F, Luan W L, Jiang T. Materials Reports, 2022, 36(19), 20080238(in Chinese).
任雨峰, 栾伟玲, 姜滔. 材料导报, 2022, 36(19), 20080238.
26 Zhong G, Liu D, Zhang J. Journal of Materials Chemistry A, 2018, 6(5), 1887.
27 Liu B, Shioyama H, Akita T, et al. Journal of the American Chemical Society, 2008, 130(16), 5390.
28 Cong Y, Huang S, Mei Y, et al. Chemistry-A European Journal, 2021, 27(64), 15866.
29 Nemiwal M, Gosu V, Zhang T C, et al. International Journal of Hydrogen Energy, 2021, 46(17), 10216.
30 Pan Y, Abazari R, Wu Y, et al. Electrochemistry Communications, 2021, 126, 107024.
31 Maiti A. Dalton Transactions, 2020, 49(33), 11430.
32 Medford A J, Vojvodic A, Hummelshøj J S, et al. Journal of Catalysis, 2015, 328, 36.
33 Zeradjanin A R, Polymeros G, Toparli C, et al. Physical Chemistry Chemical Physics, 2020, 22(16), 8768.
34 Sim H Y F, Chen J R T, Koh C S L, et al. Angewandte Chemie International Edition, 2020, 59(39), 16997.
35 Wang H F, Chen L, Pang H, et al. Chemical Society Reviews, 2020, 49(5), 1414.
36 Arafat Y, Azhar M R, Zhong Y, et al. Advanced Energy Materials, 2021, 11(26), 2100514.
37 Guo D, Shibuya R, Akiba C, et al. Science, 2016, 351(6271), 361.
38 Yang H B, Miao J, Hung S F, et al. Science Advances, 2016, 2(4), e1501122.
39 Jiao Y, Zheng Y, Davey K, et al. Nature Energy, 2016, 1(10), 1.
40 Kaneti Y V, Tang J, Salunkhe R R, et al. Advanced materials, 2017, 29(12), 1604898.
41 Zhang X, Lu P, Zhang C, et al. Journal of Catalysis, 2017, 356, 229.
42 Chen H, You S, Ma Y, et al. Chemistry of Materials, 2018, 30(17), 6014.
43 Wang W, Yan H, Anand U, et al. Journal of the American Chemical Society, 2021, 143(4), 1854.
44 Park K S, Ni Z, Cote A P, et al. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27), 10186.
45 Hayashi H, Cote A P, Furukawa H, et al. Nature Materials, 2007, 6(7), 501.
46 Banerjee R, Phan A, Wang B, et al. Science, 2008, 319(5865), 939.
47 Wang B, Cote A P, Furukawa H, et al. Nature, 2008, 453(7192), 207.
48 Santoso E, Ediati R, Istiqomah Z, et al. Microporous and Mesoporous Materials, 2021, 310, 110620.
49 Wen J, Yang L. Water Research, 2022, 218, 118490.
50 Malekmohammadi M, Fatemi S, Razavian M, et al. Solid State Sciences, 2019, 91, 108.
51 Niu X Q, Kang X Y, Ma Y X, et al. Materials Reports, 2022, 36(14), 21050021(in Chinses).
牛晓勤, 康小雅, 马应霞, 等. 材料导报, 2022, 36(14), 21050021.
52 Li G, Xie G, Gong C, et al. Microchimica Acta, 2022, 189(2), 80.
53 Xu W, Chen H, Jie K, et al. Angewandte Chemie International Edition, 2019, 58(15) 5018.
54 Kang X, Fu G, Song Z, et al. Journal of Alloys and Compounds, 2019, 795, 462.
55 Hu J, Cao L, Wang Z, et al. Composites Communications, 2021, 27, 100866.
56 Ai K, Li Z, Cui X. Journal of Power Sources, 2017, 368, 46.
57 Song Y, Zhang X, Cui X, et al. Journal of Catalysis, 2019, 372, 174.
58 Liu P, Gao S, Wang Y, et al. Chemical Engineering Journal, 2020, 381, 122853.
59 Yun Y, Zeng H, Li L, et al. Advanced Materials, 2023, 35(7), e2209561.
60 Liu Q, Li Y, Zheng L, et al. Advanced Energy Materials, 2020, 10(20), 2000689.
61 Chen W, Pei J, He C T, et al. Advanced Materials, 2018, 30(30), 1800396.
62 Jiang R, Li L, Sheng T, et al. Journal of the American Chemical Society, 2018, 140(37), 11594.
63 Pan Y, Sun K, Liu S, et al. Journal of the American Chemical Society, 2018, 140(7), 2610.
64 Feng J, Zhou H, Chen D, et al. Electrochimica Acta, 2020, 331, 135445.
65 Zhang S L, Guan B Y, Lou X W D. Small, 2019, 15(13), e1805324.
66 Rauf M, Pi L, Wang J, et al. International Journal of Hydrogen Energy, 2022, 47(28), 13616.
67 Zhu Y, Zhang Z, Lei Z, et al. Carbon, 2020, 167, 188.
68 Li J, Yan M, Zhou X, et al. Advanced Functional Materials, 2016, 26(37), 6785.
69 Zhang Z, Hao J, Yang W, et al. RSC Advances, 2016, 6(12), 9647.
70 Li W, Gao X, Wang X, et al. Journal of Power Sources, 2016, 330, 156.
71 Tong J, Li Q, Li W, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(11), 10240.
72 Amiinu I S, Liu X, Pu Z, et al. Advanced Functional Materials, 2018, 28(5), 1704638.
73 Yan J, Zheng X, Wei C, et al. Carbon, 2021, 171, 320.
74 Song Z, Liu W, Cheng N, et al. Materials Horizons, 2017, 4(5), 900.
75 Jiang M, Cao X, Zhu D, et al. Electrochimica Acta, 2016, 196, 699.
76 Liang L, Jin H, Zhou H, et al. Nano Energy, 2021, 88, 106221.
77 Huang J, Du C, Nie J, et al. Electrochimica Acta, 2019, 326, 134982.
78 Yao Y, Lan L, Li X, et al. Small, 2020, 16(33), 1907282.
79 Qi J, Chen M, Zhang W, et al. ChemCatChem, 2019, 11(24), 5969.
80 Sun T, Xu L, Yan Y, et al. ACS Catalysis, 2016, 6(3), 1446.
81 Kondori A, Esmaeilirad M, Baskin A, et al. Advanced Energy Materials, 2019, 9(22), 1900516.
82 Duan Y, Yu Z Y, Hu S J, et al. Angewandte Chemie International Edition, 2019, 58(44), 15772.
83 Liang C, Zou P, Nairan A, et al. Energy & Environmental Science, 2020, 13(1), 86.
84 Hussain N, Wu F, Xu L, et al. Nano Research, 2019, 12(12), 2941.
85 Hammer B, Norskov J K. Nature, 1995, 376(6537), 238.
86 Yu Z Y, Duan Y, Gao M R, et al. Chemical Science, 2017, 8(2), 968.
87 Ai L H, Su J F, Wang M, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 9912.
88 Das D, Santra S, Nanda K K. ACS Applied Materials & Interfaces, 2018, 10(41), 35025.
89 Ma Y Y, Lang Z L, Yan L K, et al. Energy & Environmental Science, 2018, 11(8), 2114.
90 Peng W, Yang X, Mao L, et al. Chemical Engineering Journal, 2021, 407, 127.
91 Li Y, Li J, Dai Y, et al. Materials Today Energy, 2021, 21, 100737.
92 Guo Z, Ma Y, Zhao Y, et al. Journal of Power Sources, 2022, 542, 231723.
93 Pan J, Li S, Zhang L, et al. ACS Applied Energy Materials, 2022, 5(6), 6886.
94 Tang J, Salunkhe R R, Zhang H B, et al. Scientific Reports, 2016, 6(1) 30295.
95 Ning H, Li G, Chen Y, et al. ACS Applied Materials & Interfaces, 2018, 11(2), 1957.
96 Parkash A. Journal of Porous Materials, 2021, 28(4), 1245.
97 Zhang M, Yan F, Bai J, et al. Microporous and Mesoporous Materials, 2021, 312, 110627.
98 Qiao L, Zhu A, Zeng W, et al. Journal of Materials Chemistry A, 2020, 8(5), 2453.
99 Lei Y, Wei L, Zhai S, et al. Materials Chemistry Frontiers, 2018, 2(1), 102.
100 Yang X, Cheng J, Yang X, et al. Chemical Engineering Journal, 2023, 451, 138977.
101 Jing Y, Yin H, Zhang Y, et al. International Journal of Hydrogen Energy, 2020, 45(38), 19174.
102 Chen Z, Ha Y, Jia H, et al. Advanced Energy Materials, 2019, 9(19), 1803918.
103 Liu S, Zhang H, Zhao Q, et al. Carbon, 2016, 106, 74.
104 Guo R, Shi W, Liu W, et al. Chemical Engineering Journal, 2022, 429, 132478.
105 Li D, Shi X, Sun S, et al. Inorganic Chemistry, 2022, 61(25), 9685.
106 Liu Q, Li Y, Zheng L, et al. Advanced Energy Materials, 2020, 10(20), 2000689.
107 Zhou G, Liu G, Liu X, et al. Advanced Functional Materials, 2021, 32(4), 2107608.
108 Zhu W, Zhang W, Li Y, et al. Journal of Materials Chemistry A, 2018, 6(47), 24277.
[1] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[2] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[3] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[4] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[5] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[6] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[7] 张婷婷, 高慧, 杨溢青, 洪兴枝, 任颖, 武海顺. 基于咔唑类给体分子的给-受体型热活化延迟荧光材料研究进展[J]. 材料导报, 2023, 37(16): 22060089-12.
[8] 周靓, 何文远, 陈隆源, 朱红伟, 陈丽娟, 凌辉, 郑学军. Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究[J]. 材料导报, 2023, 37(15): 22020118-7.
[9] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[10] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[11] 王留留, 任洁, 卢星宇, 邹力, 谢佳乐. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023, 37(12): 21070195-15.
[12] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[13] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[14] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[15] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed